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Introduction



Lip-to-Text for the Hearing Impaired: 
Multi-Modal Approach Using 

Vision-and-Language Transformer

Motivation

1.5 billion people with hearing loss, 
25% of people over 60 years

(WHO, 2021)
heavy dependence on lip reading &

multi-tasking can be impractical

considering several modalities 
boosts performance efficiency and speed are crucial



Existing Solutions

(Hao et al., 2020)

Morade & Patnaik, 2014
Sterpu & Harte, 2017

● Traditional Lip Reading

Luettin and N. A. Thacker, 1997
Ma et al., 2016

Bear et al., 2017
Howell et al., 2016
Watanabe et al., 2016



Existing Solutions

(Hao et al., 2020)

● Deep Lip Reading

Garg et al., 2016
Li et al., 2016
Mesbah et al., 2019
Noda et al., 2014
Saitoh et al., 2016
Zhang et al., 2019

FNN: Wand et al., 2016, 2017 & 2018
Autoencoder: Petridis et al., 2017 & 2018

Margam et al., 2019
Petridis et al., 2018
Stafylakis & Tzimiropoulos, 2017

Bi-LSTM: Stafylakisa et al., 2018; Weng & Kitani, 2019
Bi-GRU: Luo et al., 2020; Xiao et al., 2020; 
Zhao et al., 2020; Zhang et al., 2020

Assael et al., 2016
Fung & Mak, 2018
Qiu et al., 2017
Torfi et al., 2017
Tran et al., 2017
Yang et al., 2019



Targeted Gap

The systems heavily rely on computationally 
complex feature extraction from visual input.

affects efficiency & speed of overall system

(Kim et al., 2021)



Objective

Evaluate the performance of the Vision-and-
Language Transformer (ViLT) model, which 

provides a shallow, convolution-free
embedding of input pixels, in the lip-reading 

task.
Our focus is on fine-tuning and testing the ViLT model on a publicly 

available lip-reading dataset; we are not concerned with how the input 
data is obtained or output is displayed in real-time.



Backgrounds



Backgrounds

● Convolutional Neural Network (CNN):
○ Ideal for computer vision, classification, and object detection tasks
○ Several Layers of interconnected nodes
○ Results are based on extracted features



Backgrounds

● Convolutional Neural Network (CNN):

(Gu et al., 2019)



Backgrounds

● Long Short-Term Memory (LSTM):
○ Ideal for processing sequential data
○ Chain structure
○ Commonly used for language translation and text generation



Backgrounds

● Long Short-Term Memory (LSTM):

https://blog.floydhub.com/long-short-term-memory-from-zero-to-hero-with-
pytorch/



Backgrounds

● Vision and Language Transformer (ViLT) (Kim et al., 2021)
○ Trained on 4 datasets: COCO, Visual Genome, Conceptual Captions & SBU Captions
○ 2 pre-training tasks:

■ Image Text Matching
■ Masked Language Modeling



Approaches



Dataset

● MIRACL-VC1: a lip-reading dataset (Rekik et al., 2014)
○ Captured by Microsoft Kinect sensor, 640x480 pixels
○ 15 speakers (5 men and 10 women)
○ Each speaker read 10 times for a set of 10 words and 10 phrases
○ A total number of 3000 instances (15 x 20 x 10)



Data Preprocessing #1

● Following Garg et al. (2016), Gutierrez & Robert (2017)
○ Cropped out all but face
○ OpenCV face detection module (Bradski, G., 2000)



Data Augmentation

● Following Garg et al. (2016)
○ Tripled dataset size (3,000 → 9,000)
○ 2 modifications: shifting crop region & pixel jittering



Data Preprocessing #2
● Each instance:

○ Currently: a sequence of several 90 x 90 pixel images, 1 image/point in time
○ Desired: 1 input image/instance

Original Image Sequence for Single Instance (12 90x90 images)

Stretched Image Sequence for Single Instance (25 90x90 images)

● Following Garg et al. (2016)
○ Step 1: stretch each sequence



Data Preprocessing #2
● Each instance:

○ Currently: a sequence of several 90 x 90 pixel images, 1 image/point in time
○ Desired: 1 input image/instance

● Following Garg et al. (2016)
○ Step 1: stretch each sequence

Concatenated Image of Stretched 
Image Sequence for Same Instance

(one 450x450 image)

○ Step 2: concatenate images in stretched sequence



Experiment Setup

● Model
○ ViLT (Kim et al., 2021)

■ Pre-tuning: on MSCOCO dataset (200k images) 
■ Loss function: cross entropy loss
■ Batch size: 32
■ Epochs: 10 (2250 steps)

● Evaluation
○ For each word/phrase per speaker, 8 for fine-tuning & 2 for testing

■ 6200 instances for fine-tuning & 1800 instances for testing
○ Baselines: random baseline, encoder-decoder approach (CNN + LSTM) (Garg et al., 

2016)



Results & Analysis



Results Comparison



Zero-Shot Results
Heatmap of ViLT zero-shot results



Fine-Tuning Results
Heatmap of ViLT fine-tuned resultsLoss curve while fine-tuning ViLT



Demo Video

http://www.youtube.com/watch?v=MNaj7UjbewI


Conclusions & Future Works



Conclusions

● Fine-tuned ViLT model can produce promising performance in lip-reading task
○ ~90% overall accuracy and outperformed other baselines
○ ~150 ms inference time

● Multimodal models should be capable for the lip-reading task

● Data preprocessing procedure should be simplified

● Problems with the dataset
○ “Stop”, “Navigation”, and “Stop navigation”
○ Unbalanced gender and skin color distribution



Future Works

● Convert video directly to 3D volume embedding

● Need to check whether ViLT is overfitted

● Use a better dataset
○ More instances
○ More words and phrases

● Investigate other lightweight models

● Deploy the model onto portable devices

(Arnab et al., 2021)



Thank You! Questions?
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