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Introduction




Motivation

Lip-to-Text|for the

Hearing Impaired;

[Multi-Modal|Approach Using

Vision-and-Language Transformer

25% of people over 60 years

(WHO, 2021)
.

(" 1.5 billion eople with hearing loss, )

r

considering several modalities
boosts performance

r

\.

heavy dependence on lip reading &
multi-tasking can be impractical

~

r

efficiency and speed are crucial




Existing Solutions

e Traditional Lip Reading

Lip detection and

extraction . 4 . .
: Feature Feature . Classification
s extraction Transformation
Video
Pixel-based PCA DTW
LDA TDNN
Shape-based - - | Output
p DCT SsVM = Outp
Mixed DWT HMM

Morade & Patnaik, 2014 Luettin and N. A. Thacker, 1997

Sterpu & Harte, 2017 Ma et al., 2016

Bear et al., 2017

Howell et al., 2016
Watanabe et al., 2016

(Hao et al., 2020)



Existing Solutions

e Deep Lip Reading

Lip detection and

extraction
Front-end
Back-end
2D CNN RNN
3D CNN
- TCN = Output
3D + 2D CNN
Transformer
Other
Gargetal., 2016 Assael et al., 2016
Lietal., 2016 Fung & Mak, 2018 Margam etal., 2019 Bi-LSTM: Stafylakisa et al., 2018; Weng & Kitani, 2019
Mesbah et al., 2019 Qiuetal., 2017 Petridis et al., 2018 Bi-GRU: Luo et al., 2020; Xiao et al., 2020;

Nodaetal.,2014  Torfietal,, 2017 Stafylakis & Tzimiropoulos, 2017  Zhao et al., 2020; Zhang et al., 2020

Saitohetal.,2016 Tranetal.,,2017 FNN:Wand et al., 2016, 2017 & 2018

Zhangetal., 2019 Yangetal.,,2019  Autoencoder: Petridis et al., 2017 & 2018
(Hao et al., 2020)



Targeted Gap

4 )

The systems heavily rely on computationally
complex feature extraction from visual input.

- J

affects efficiency & speed of overall system

(Kim et al., 2021)



Objective

/ Evaluate the performance of the Vision-and- )
Language Transformer (ViLT) model, which
provides a shallow, convolution-free
embedding of input pixels, in the lip-reading

\_ task. )

Our focus is on fine-tuning and testing the ViLT model on a publicly
available lip-reading dataset; we are not concerned with how the input
data is obtained or output is displayed in real-time.




Backgrounds




Backgrounds

e Convolutional Neural Network (CNN):
o Ideal for computer vision, classification, and object detection tasks
o Several Layers of interconnected nodes

o Results are based on extracted features



Backgrounds

e Convolutional Neural Network (CNN):

Output Layer
Input Layer . T ﬂ.'-‘“‘*h,ﬁﬂ
| ] ® O

Convolution Pooling Convolution Pooling T8
Layer Layer Layer Layer Fully
Connected
Layer

(Guetal., 2019)



Backgrounds

e Long Short-Term Memory (LSTM):
o Ideal for processing sequential data
o Chain structure
o Commonly used forlanguage translation and text generation



Backgrounds

e Long Short-Term Memory (LSTM):

Output

<
/
y

NEW Cell
state

NEW Hidden
state

Cell State/ /
Long-term o)
Memory

Hidden State/
Short-term

Memory

https://blog.floydhub.com/long-short-term-memory-from-zero-to-hero-with-
pytorch/



Backgrounds

e Vision and Language Transformer (ViLT) (Kim etal., 2021)

o Trained on 4 datasets: COCO, Visual Genome, Conceptual Captions & SBU Captions
O 2 pre-training tasks:

» Image Text Matching

= Masked Language Modeling

Image Text Malchlng Masked Language Modeling Word Patch Alignment
[ ot T G poiotiee! Gl o
2 W
[ 1 [ l [ [ 7 | [ 1
mh tra leamnable [€lass) embedding
Visual Model #Params #FLOPS Time Transformer Encoder

Embed (M) (G) (ms) ““""‘"'—‘""““"“""“‘
. ViLBERT 274.3 958.1 7900 e
Linear VILT 87.4 559 IS “"‘""""“""""““""“

Word Embedding Lmear Pro;ectlon of Flattened Patches

| T T | ——
a stone statue near an [MASK] h ead . _f_




Approaches




Dataset

® MIRACL-VC1: alip-reading dataset (Rekik et al., 2014)
Captured by Microsoft Kinect sensor, 640x480 pixels

O O O O

15 speakers (5 men and 10 women)
Each speaker read 10 times for a set of 10 words and 10 phrases
A total number of 3000 instances (15 x 20 X 10)

ID Words ID Phrases
1 |Begin 1 | Stop navigation.
2 | Choose 2 | Excuse me.

3 | Connection 3 | Iamsorry.

4 | Navigation 4 | Thank you.

5 | Next 5 | Good bye.

6 | Previous 6 | I love this game.
7 | Start 7 | Nice to meet you.
8 | Stop 8 | You are welcome.
9 |Hello 9 | How are you?

10 | Web 10 | Have a good time.




Data Preprocessing #1

e Following Garg et al. (2016), Gutierrez & Robert (2017)
o Cropped out all but face
o OpenCV face detection module (Bradski, G., 2000)

Original Image Cropped Image
(640%480) (90%90)



Data Augmentation

e Following Garg et al. (2016)
o Tripled dataset size (3,000 » 9,000)
o 2 modifications: shifting crop region & pixel jittering

1st Cropped Image
(original crop region)
(90%90)

2nd Cropped Image
(shifted crop region)
(90%90)

Original Image

(640%x480) Pixel-Jittered Image

(90%90)




Data Preprocessing #2

e Each instance:
o Currently: a sequence of several 90 x 90 pixel images, 1image/point in time
o Desired:1input image/instance

e Following Garg et al. (2016) i % ori g len

o Step 1: stretch each sequence stretch_seq[i] = orig_seq[floor( )]

4 z & £ 7 £
Y‘ YJ !‘ Yl r.l (‘J

Original Image Sequence for Slngle Instance (12. 90Xx90 lmages)

Stretched Image Sequence for Single Instance (25 90x90 images)



Data Preprocessing #2

e Each instance:

o Currently: a sequence of several 90 x 90 pixel images, 1image/point in time
o Desired:1inputimage/instance

e Following Garg et al. (2016)

o Step 1: stretch each sequence stretch_seq[i] = orig_seq[floor(

i ¥orig_len
cauent 25
o Step 2: concatenate images in stretched sequence

Concatenated Image of Stretched
Image Sequence for Same Instance
(one 450x450 image)
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Experiment Setup

e Model
o VIiLT (Kim etal., 2021)
» Pre-tuning: on MSCOCO dataset (200k images)
» Loss function: cross entropy loss
= Batchsize:32
= Epochs: 10 (2250 steps)

e Evaluation
o For each word/phrase per speaker, 8 for fine-tuning & 2 for testing
= 6200 instances for fine-tuning & 1800 instances for testing
o Baselines:random baseline, encoder-decoder approach (CNN + LSTM) (Garg et al.,
2016)



Results & Analysis




Results Comparison

Table 1: Comparison of testing accuracy among random base-
line, CNN and LSTM baseline, ViLT (zero-shot), and ViLT
(fine-tuned)

Only Words Only Phrases Both

Random Baseline 10.00% 10.00% 5.00%
CNN + LSTM 56.00% 33.00% 44 50%
ViLT (zero-shot) 7.89% 1.78% 4.83%

ViLT (fine-tuned) 80.44% 98.11% 89.28%




Zero-Shot Results
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Fine-Tuning Results

Loss curve while fine-tuning ViLT Heatmap of ViLT fine-tuned results
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Demo Video

The model has the correct prediction using



http://www.youtube.com/watch?v=MNaj7UjbewI

Conclusions & Future Works



Conclusions

Fine-tuned ViLT model can produce promising performance in lip-reading task
o ~90% overall accuracy and outperformed other baselines
o ~150 ms inference time

Multimodal models should be capable for the lip-reading task
Data preprocessing procedure should be simplified
Problems with the dataset

o “Stop”, “Navigation”, and “Stop navigation”
o Unbalanced gender and skin color distribution



Future Works

Convert video directly to 3D volume embedding
Need to check whether ViLT is overfitted

Use a better dataset

o Moreinstances

(Arnabetal., 2021)

o More words and phrases
Investigate other lightweight models

Deploy the model onto portable devices



Thank You! Questions?
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